How do you find 3x2x(1x)2(13x)dx using partial fractions?

1 Answer
Nov 26, 2015

[ln(1x1)+1x1]+C

Explanation:

3x2x(1x)2(13x)dx

A,B,C such as

3x2x(x1)2(3x1)=Ax1B(x1)2C3x1

(I factorized the denominator to do partial fraction)

Multiply both side by : (x1)2(3x1)

3x2x=A(3x1)(x1)+B(3x1)+C(x1)2

3x2x=A(14x+3x2)+B(3x1)+C(1+x22x)

3x2x=A4Ax+3Ax2B+3Bx+C+Cx22Cx

3x2x=x2(C+3A)+x(4A+3B2C)+AB+C

by identification

C+3A=3
4A+3B2C=1
AB+C=0

you find ( ;) )

A=1
B=1
C=0

and then

3x2x(x1)2(3x1)dx=1x1+1(x1)2dx

Which is [ln(1x1)+1x1]+C

(Because aln(b)=ln(ba))

and 1u2=1u