How do you find int (3-x)/((x^2+3)(x+3)) dx using partial fractions?

1 Answer

int (3-x)/((x^2+3)(x+3))dx
=-1/4ln (x^2+3)+(sqrt3)/6 tan^-1 ((sqrt3*x)/3)+1/2ln(x+3)+C_0

Explanation:

We start with partial fraction procedure with the unknowns A, B, C

(3-x)/((x^2+3)(x+3))=(Ax+B)/(x^2+3)+C/(x+3)

LCD=(x^2+3)(x+3)

(3-x)/((x^2+3)(x+3))=(Ax^2+Bx+3Ax+3B+Cx^2+3C)/((x^2+3)(x+3))

Transform the numerator so that the numerical coefficients match for both left and right side of the equation

(0*x^2+(-1)x+3x^0)/((x^2+3)(x+3))=(Ax^2+Cx^2+3Ax+Bx+3B+3C)/((x^2+3)(x+3))

(0*x^2+(-1)x+3x^0)/((x^2+3)(x+3))=((A+C)x^2+(3A+B)x+(3B+3C)x^0)/((x^2+3)(x+3))

We now have the equations to solve for the values of A,B, C

A+C=0
3A+B=-1
3B+3C=3

Simultaneous solution of these equations result to
A=-1/2 and B=1/2 and C=1/2

(3-x)/((x^2+3)(x+3))=(-1/2x+1/2)/(x^2+3)+(1/2)/(x+3)

We can now integrate

int(3-x)/((x^2+3)(x+3))dx=int [(-1/2x+1/2)/(x^2+3)+(1/2)/(x+3)] dx

int(3-x)/((x^2+3)(x+3))dx=int (-1/2x)/(x^2+3)dx+int +(1/2)/(x^2+3)dx+int(1/2)/(x+3) dx

int(3-x)/((x^2+3)(x+3))dx=-1/4ln (x^2+3)+(sqrt3)/6 tan^-1 ((sqrt3*x)/3)+1/2ln(x+3)+C_0

God bless....I hope the explanation is useful.