Develop the integral in partial fractions:
(2x)/((1-x)(1+x^2)) = A/(1-x) + (Bx+C)/(1+x^2)2x(1−x)(1+x2)=A1−x+Bx+C1+x2
(2x)/((1-x)(1+x^2)) = (A(1+x^2) + (Bx+C)(1-x))/((1-x)(1+x^2))2x(1−x)(1+x2)=A(1+x2)+(Bx+C)(1−x)(1−x)(1+x2)
2x = A+Ax^2 +Bx+C-Bx^2-Cx2x=A+Ax2+Bx+C−Bx2−Cx
2x = (A-B)x^2 +(B-C)x+(A+C)2x=(A−B)x2+(B−C)x+(A+C)
So:
A-B = 0 => A=BA−B=0⇒A=B
B-C = 2 => A-C=2B−C=2⇒A−C=2
[(A-C=2) , (A+C = 0)] => A=1, B=1, C=-1
(2x)/((1-x)(1+x^2)) = 1/(1-x) +(x-1)/(1+x^2)
int (2xdx)/((1-x)(1+x^2)) = int (dx)/(1-x) +int (xdx)/(1+x^2)-int (dx)/(1+x^2)=-ln abs(1-x)+1/2ln(1+x^2)-arctanx