How do you find all values of x in the interval [0, 2pi] in the equation cos2x= cosx?

1 Answer
Mar 9, 2016

x=0, (2pi)/3, (4pi)/3, 2pi

Explanation:

Using the identity cos2x=2cos^2x-1, cos2x=cosx becomes

2cos^2x-1=cosx or

2cos^2x-cosx-1=0

Using quadratic formula

cosx=(-(-1)+-sqrt((-1)^2-4xx2xx(-1)))/(2xx2) or

cosx=(1+-sqrt(1+8))/4 or cosx=(1+-3)/4 i.e.

cosx=1 or -1/2

Hence x=0, (2pi)/3, (4pi)/3, 2pi