How do you find all values of x in the interval [0, 2pi] in the equation cos x =sin 2x?

1 Answer
Apr 17, 2016

S={pi/6, pi/2, (5pi)/6, (3pi)/2}

Explanation:

cosx - sin 2x =0

cosx - 2sin x cos x=0

cosx(1-2sinx)=0

cos x=0 or 1-2sinx =0

x=cos^-1 0 or -2sinx=-1-> sinx= 1/2-> x=sin^-1(1/2)

x=pi/2 , (3pi)/2 or x=pi/6 , (5pi)/6

S={pi/6, pi/2, (5pi)/6, (3pi)/2}