How do you find all values of x in the interval [0, 2pi] in the equation cos(x+pi/3)+cosx=0?

1 Answer
Mar 14, 2016

In domain [0,2pi], solution is {pi/3, (4pi)/3}

Explanation:

We will use the identity cos(x+y)=cosxcosy-sinxsiny

Hence cos(x+pi/3)+cosx=0

or cosxcos(pi/3)-sinxsin(pi/3)+cosx=0

=or cosx xx1/2-sinx xxsqrt3/2 +cosx=0

or sinx xxsqrt3/2=cosx xx3/2

or sinx/cosx=3/2xx2/sqrt3

or tanx=3/sqrt3=sqrt3

or x=pi/3

But as tan(pi+x)=tanx another solution is pi+pi/3=(4pi)/3.

Hence, in domain [0,2pi], solution is {pi/3, (4pi)/3}