How do you find all values of x in the interval [0, 2pi] in the equation 6cos^2 x - sin x - 4 = 0?

1 Answer
Apr 18, 2016

S={2.6180, 0.5236,3.87,5.5535}

Explanation:

Use the Property cos^2x+sin^2x=1

6(1-sin^2x)-sinx-4=0

6-6sin^2x-sinx-4=0

6sin^2x+sinx-2=0

(2sinx-1)(3sinx+2)=0

2sinx-1=0 or 3sinx+2=0

2sinx=1 or 3sinx=-2

sinx=1/2 or sinx =-2/3

x=sin^-1 (1/2) or x=sin^-1 (-2/3)

x=pi/6 +2pin, (5pi)/6 +2pin or x=-0.7297...+2pin, -2.4118...+2pin

n=0, x=2.6180, 0.5236,-0.7297, -2.4118

n=1, x=6.8067, 8.9012, 5.5535, 3.87

n=2, x=13.0899, 15.1844, 11.8366, 10.1545->all greater than 2pi so we stop here

S={2.6180, 0.5236,3.87,5.5535}