How do you find all values of x in the interval [0, 2pi] in the equation 2sin^2x - sinx - 1 = 02sin2xsinx1=0?

1 Answer
Mar 27, 2016

Solution set in the interval [0,2pi][0,2π] is {pi/2,(7pi)/6,(11pi)/6}{π2,7π6,11π6}

Explanation:

To find all values of x in the interval [0, 2pi][0,2π] in the equation 2sin^2x−sinx−1=02sin2xsinx1=0, let us solve by considering sinxsinx as variable and using quadratic formula.

Hence sinx=(-(-1)+-sqrt((-1)^2-4xx2xx(-1)))/(2xx2)sinx=(1)±(1)24×2×(1)2×2 or

sinx=(1+-sqrt(1+8))/4sinx=1±1+84 i.e.

sinx=(1+-3)/4sinx=1±34 i.e. sinx=1sinx=1 or -1/212

In the interval [0,2pi][0,2π], sinx=1sinx=1 only for x=pi/2x=π2

and sinx=-1/2sinx=12 for x=(7pi)/6x=7π6 and (11pi)/611π6

Hence solution set in the interval [0,2pi][0,2π] is {pi/2,(7pi)/6,(11pi)/6}{π2,7π6,11π6}