How do you find all the real and complex roots of #f(x)= 3x^3 + 36x^2 + 156x + 240#?
1 Answer
Explanation:
The difference of squares identity can be written:
#a^2-b^2 = (a-b)(a+b)#
We use this later, with
#f(x) = 3x^3+36x^2+156x+240#
#color(white)(f(x)) = 3(x^3+12x^2+52x+80)#
We can start to simplify this cubic using a linear substitution to eliminate the square term:
#x^3+12x^2+52x+80 = (x^3+12x^2+48x+64) + (4x+16)#
#color(white)(x^3+12x^2+52x+80) = (x+4)^3 + 4(x+4)#
We could put
#color(white)(x^3+12x^2+52x+80) = (x+4)((x+4)^2+4)#
#color(white)(x^3+12x^2+52x+80) = (x+4)((x+4)^2-(2i)^2)#
Having made the quadratic factor into a difference of squares, we can apply the difference of squares identity to find:
#color(white)(x^3+12x^2+52x+80) = (x+4)((x+4)-2i)((x+4)+2i)#
#color(white)(x^3+12x^2+52x+80) = (x+4)(x+4-2i)(x+4+2i)#
Hence the zeros of