How do you find all solutions of the equations 2sec^2x+tan^2x-3=0 in the interval [0,2pi)?

1 Answer

"Solution set is " {pi/6,(5pi)/6,(7pi)/6,(11pi)/6}

Explanation:

2sec^2x+tan^2x-3=0

we need to change to either all tangent or secant functions

now
1+tan^2x=sec^2x

so

2(1+tan^2x)+tan^2x-3=0

2+2tan^2x+tan^2x-3=0

=>3tan^2x=1

=>tanx=+-1/sqrt3

we only need the positive square root since the interval specified is

[0,2pi)

and in [0,2[i), x=pi/6, pi+pi/6=(7pi)/6 or x=(5pi)/6,(11pi)/6

"Solution set is " {pi/6,(5pi)/6,(7pi)/6,(11pi)/6}