How do you find all solutions of the equation sin(x+pi/4)-sin(x-pi/4)=1sin(x+π4)sin(xπ4)=1 in the interval [0,2pi)[0,2π)?

1 Answer
Jun 15, 2017

"The Soln. Set.="{2kpi+-pi/4 | k in ZZ.}.

The Solns. in [0,2pi), are, therefore, pi/4, and, 7pi/4.

Explanation:

sin(x+pi/4)-sin(x-pi/4)=1.

rArr 2cos[1/2{(x+pi/4)+(x-pi/4)}]sin[1/2{(x+pi/4)-(x-pi/4)}]=1.

rArr 2cosxsin(pi/4)=1.

rArr2*1/sqrt2*cosx=1.

rArr cosx=1/sqrt2=cos(pi/4).

Knowing that, costheta=cosalpha rArr theta=2kpi+-alpha, k in ZZ,

"The Soln. Set.="{2kpi+-pi/4 | k in ZZ.}.

In Particular, the Solns. in [0,2pi), are, therefore, pi/4, and, 7pi/4.