How do you find all solutions of the equation #sin(x+pi/4)-sin(x-pi/4)=1# in the interval #[0,2pi)#?

1 Answer
Jun 15, 2017

#"The Soln. Set.="{2kpi+-pi/4 | k in ZZ.}.#

The Solns. in #[0,2pi), are, therefore, pi/4, and, 7pi/4.#

Explanation:

#sin(x+pi/4)-sin(x-pi/4)=1.#

#rArr 2cos[1/2{(x+pi/4)+(x-pi/4)}]sin[1/2{(x+pi/4)-(x-pi/4)}]=1.#

#rArr 2cosxsin(pi/4)=1.#

#rArr2*1/sqrt2*cosx=1.#

#rArr cosx=1/sqrt2=cos(pi/4).#

Knowing that, #costheta=cosalpha rArr theta=2kpi+-alpha, k in ZZ,#

#"The Soln. Set.="{2kpi+-pi/4 | k in ZZ.}.#

In Particular, the Solns. in #[0,2pi), are, therefore, pi/4, and, 7pi/4.#