How do you find all solutions of the equation in the interval (0, 2pi) 1/2 = 1 - cos^2 x?

1 Answer
Mar 1, 2016

pi/4, (3pi)/4, (5pi)/4, (7pi)/4

Explanation:

1/2 = 1 - cos^2 x. Replace (1 - cos^2 x) by sin^2 x.
1/2 = sin^2 x
sin x = +- sqrt2/2
a. sin x = sqrt2/2 --> x = pi/4 and x = (3pi)/4
b. sin x = - sqrt2/2 --> x = - pi/4 and x = (-3pi)/4

Note: (-pi/4) --> (7pi)/4 (co-terminal) and - (3pi)/4 --> (5pi)/4 (co-terminal)

Answers for (0, 2pi):
pi/4, (3pi)/4, (5pi)/4, (7pi)/4