How do you find all solutions of the equation cos(x+pi/6)-cos(x-pi/6)=1 in the interval [0,2pi)?

2 Answers
Mar 1, 2017

See below.

Explanation:

cos(x + a) - cos(x - a) = -2 sin x sin a

so

-2 sin x sin a=1->sinx = -1/(2sina) = -1/(2 xx 1/2) = -1

so

x = arcsin(-1)+2kpi=- pi/2+2kpi then

x = 3/2pi

Mar 2, 2017

x = (3pi)/2

Explanation:

Here's a different way of proceeding. Use the sum and difference formulae cos(A + B) = cosAcosB - sinAsinB and cos(A - B) = cosAcosB + sinAsinB.

cosxcos(pi/6) - sinxsin(pi/6) - (cosxcos(pi/6) + sinxsin(pi/6)) = 1

cosx(sqrt(3)/2) - sinx(1/2) - (cosx(sqrt(3)/2) + sinx(1/2)) = 1

sqrt(3)/2cosx - 1/2sinx - sqrt(3)/2cosx - 1/2sinx = 1

-sinx = 1

sinx = -1

x = (3pi)/2

Hopefully this helps!