How do you find all solutions of the equation cos(x+(3pi)/4)-cos(x-(3pi)/4)=0cos(x+3π4)cos(x3π4)=0 in the interval [0,2pi)[0,2π)?

1 Answer
Jan 9, 2017

0, pi, 2pi0,π,2π

Explanation:

Use trig identity:
cos a - cos b = - 2sin ((a + b)/2)sin ((a - b)/2)cosacosb=2sin(a+b2)sin(ab2)
In this case:
(a + b) = 2x --> sin ((a + b)/2) = sin xsin(a+b2)=sinx
(a - b) = (6pi)/4(ab)=6π4 --> sin ((a - b)/2) = sin ((3pi)/4)sin(ab2)=sin(3π4)
The equation f(x) becomes:
f(x) = cos (x + (3pi)/4) - cos (x - (3pi)/4) =f(x)=cos(x+3π4)cos(x3π4)=
= - 2sin x.sin ((3pi)/4) = 0=2sinx.sin(3π4)=0
Since sin ((3pi)/4) = sqrt2/2sin(3π4)=22, then:
f(x) = - sqrt2.sin x = 0f(x)=2.sinx=0
Unit circle -->
sin x = 0 --> x = 0, x= pi, x = 2pix=0,x=π,x=2π
Answers for (0, 2pi)(0,2π)
0, pi, 2pi0,π,2π