Solution: In[0,2pi) x=pi/6,x=(7pi)/6 and x=(5pi)/6, x= (11pi)/6[0,2π)x=π6,x=7π6andx=5π6,x=11π6
Explanation:
3tan^2x-1=0 or3tan^2x=1 or tan^2x=1/3 or tanx=+- 1/sqrt33tan2x−1=0or3tan2x=1ortan2x=13ortanx=±1√3. We know tan(pi/6)= 1/sqrt3 and tan(pi+pi/6)= 1/sqrt3 tan(π6)=1√3andtan(π+π6)=1√3 and also tan(2pi-pi/6)= -1/sqrt3 and tan(pi-pi/6)= -1/sqrt3 tan(2π−π6)=−1√3andtan(π−π6)=−1√3.
Solution: In [0,2pi) x=pi/6,x=(7pi)/6 and x=(5pi)/6, x= (11pi)/6[0,2π)x=π6,x=7π6andx=5π6,x=11π6[Ans]