How do you find a possible value for a if the points (a,-6), (-5,2) has a distance of d=10?

1 Answer
Feb 26, 2017

There are two possible values for a: -11 or 1

Explanation:

The formula for calculating the distance between two points is:

d = sqrt((color(red)(x_2) - color(blue)(x_1))^2 + (color(red)(y_2) - color(blue)(y_1))^2)

Substituting the values from the points in the problem gives:

10 = sqrt((color(red)(-5) - color(blue)(a))^2 + (color(red)(2) - color(blue)(-6))^2)

10 = sqrt((color(red)(-5) - color(blue)(a))^2 + (color(red)(2) + color(blue)(6))^2)

10^2 = (sqrt((color(red)(-5) - color(blue)(a))^2 + (color(red)(2) + color(blue)(6))^2))^2

100 = (color(red)(-5) - color(blue)(a))^2 + (color(red)(2) + color(blue)(6))^2

100 = (color(red)(-5) - color(blue)(a))^2 + 8^2

100 = (color(red)(-5) - color(blue)(a))^2 + 64

100 - color(red)(64) = (color(red)(-5) - color(blue)(a))^2 + 64 - color(red)(64)

36 = (color(red)(-5) - color(blue)(a))^2 + 0

36 = (color(red)(-5) - color(blue)(a))^2

sqrt(36) = sqrt((color(red)(-5) - color(blue)(a))^2)

6 = +-(-5 - a)

Solution 1)

6 = -(-5 - a)

6 = 5 + a

-color(red)(5) + 6 = -color(red)(5) + 5 + a

1 = 0 + a

1 = a

a = 1

Solution 2)

6 = -5 - a

color(red)(5) + 6 = color(red)(5) - 5 - a

11 = 0 - a

11 = -a

color(red)(-1) xx 11 = color(red)(-1) xx -a

-11 = a

a = -11

The solutions are a = -11 or a = 1