The formula for calculating the distance between two points is:
d = sqrt((color(red)(x_2) - color(blue)(x_1))^2 + (color(red)(y_2) - color(blue)(y_1))^2)
Now, substitute d and the values from the points given in the problem and solve for a:
7 = sqrt((color(red)(a) - color(blue)(-9))^2 + (color(red)(5) - color(blue)(-2))^2)
7 = sqrt((color(red)(a) + color(blue)(9))^2 + (color(red)(5) + color(blue)(2))^2)
7 = sqrt((color(red)(a) + color(blue)(9))^2 + (7)^2)
7 = sqrt((color(red)(a) + color(blue)(9))^2 + 49)
7^2 = (sqrt((color(red)(a) + color(blue)(9))^2 + 49))^2
49 = (color(red)(a) + color(blue)(9))^2 + 49
49 - color(red)(49) = (color(red)(a) + color(blue)(9))^2 + 49 - color(red)(49)
0 = (color(red)(a) + color(blue)(9))^2 + 0
0 = (color(red)(a) + color(blue)(9))^2
0 = (color(red)(a) + color(blue)(9))(color(red)(a) + color(blue)(9))
We can now solve a + 9 for 0:
a + 9 = 0
a + 9 - color(red)(9) = 0 - color(red)(9)
a + 0 = -9
a = -9
-9 is a possible value for a.