How do you factor x^5+x^3+8x^2+8x5+x3+8x2+8?

1 Answer
Nov 16, 2015

Factor by grouping and the sum of cubes identity to find:

x^5+x^3+8x^2+8 = (x^2+1)(x+2)(x^2-2x+4)x5+x3+8x2+8=(x2+1)(x+2)(x22x+4)

Explanation:

The sum of cubes identity may be written:

a^3+b^3=(a+b)(a^2-ab+b^2)a3+b3=(a+b)(a2ab+b2)

We use this with a=xa=x and b=2b=2 to find:

x^5+x^3+8x^2+8x5+x3+8x2+8

=(x^5+x^3)+(8x^2+8)=(x5+x3)+(8x2+8)

=(x^2+1)x^3 + (x^2+1)8=(x2+1)x3+(x2+1)8

=(x^2+1)(x^3+8)=(x2+1)(x3+8)

=(x^2+1)(x^3+2^3)=(x2+1)(x3+23)

=(x^2+1)(x+2)(x^2-x(2)+2^2)=(x2+1)(x+2)(x2x(2)+22)

=(x^2+1)(x+2)(x^2-2x+4)=(x2+1)(x+2)(x22x+4)