How do you factor x^5+x^3+8x^2+8x5+x3+8x2+8?
1 Answer
Nov 16, 2015
Factor by grouping and the sum of cubes identity to find:
x^5+x^3+8x^2+8 = (x^2+1)(x+2)(x^2-2x+4)x5+x3+8x2+8=(x2+1)(x+2)(x2−2x+4)
Explanation:
The sum of cubes identity may be written:
a^3+b^3=(a+b)(a^2-ab+b^2)a3+b3=(a+b)(a2−ab+b2)
We use this with
x^5+x^3+8x^2+8x5+x3+8x2+8
=(x^5+x^3)+(8x^2+8)=(x5+x3)+(8x2+8)
=(x^2+1)x^3 + (x^2+1)8=(x2+1)x3+(x2+1)8
=(x^2+1)(x^3+8)=(x2+1)(x3+8)
=(x^2+1)(x^3+2^3)=(x2+1)(x3+23)
=(x^2+1)(x+2)(x^2-x(2)+2^2)=(x2+1)(x+2)(x2−x(2)+22)
=(x^2+1)(x+2)(x^2-2x+4)=(x2+1)(x+2)(x2−2x+4)