How do you factor 24x^3-6x^2+8x-2?
1 Answer
Nov 15, 2016
Explanation:
Notice that the ratio betweeen the first and second terms is the same as that between the third and fourth terms. So this cubic will factor by grouping:
24x^3-6x^2+8x-2 = (24x^3-6x^2)+(8x-2)
color(white)(24x^3-6x^2+8x-2) = 6x^2(4x-1)+2(4x-1)
color(white)(24x^3-6x^2+8x-2) = (6x^2+2)(4x-1)
color(white)(24x^3-6x^2+8x-2) = 2(3x^2+1)(4x-1)
The remaining quadratic factor has no linear factors with Real coefficients, since