How do you factor 20x^4+16x^3-5x-420x4+16x3−5x−4?
1 Answer
Explanation:
Notice that the ratio of the first and second terms is the same as that of the third and fourth terms. So this quadrinomial will factor by grouping:
20x^4+16x^3-5x-4 = (20x^4+16x^3)-(5x+4)20x4+16x3−5x−4=(20x4+16x3)−(5x+4)
color(white)(20x^4+16x^3-5x-4) = 4x^3(5x+4)-1(5x+4)20x4+16x3−5x−4=4x3(5x+4)−1(5x+4)
color(white)(20x^4+16x^3-5x-4) = (4x^3-1)(5x+4)20x4+16x3−5x−4=(4x3−1)(5x+4)
We can factor
a^3-b^3 = (a-b)(a^2+ab+b^2)a3−b3=(a−b)(a2+ab+b2)
So:
4x^3-1 = (root(3)(4)x)^3-1^34x3−1=(3√4x)3−13
color(white)(4x^3-1) = (root(3)(4)x-1)((root(3)(4)x)^2+root(3)(4)x+1)4x3−1=(3√4x−1)((3√4x)2+3√4x+1)
color(white)(4x^3-1) = (root(3)(4)x-1)(root(3)(16)x^2+root(3)(4)x+1)4x3−1=(3√4x−1)(3√16x2+3√4x+1)
color(white)(4x^3-1) = (root(3)(4)x-1)(2root(3)(2)x^2+root(3)(4)x+1)4x3−1=(3√4x−1)(23√2x2+3√4x+1)