How do you expand (1+4x^4)^4(1+4x4)4? Precalculus The Binomial Theorem Pascal's Triangle and Binomial Expansion 1 Answer Binayaka C. Dec 10, 2017 (1+4x^4)^4=1+16x^4+96x^8 +256x^12+256x^16 .(1+4x4)4=1+16x4+96x8+256x12+256x16. Explanation: (a + b)^n =(nC_0) a^nb^0+ (nC_1) a^(n-1)b^1 +(nC_2) a^(n-2)b^2 +...... (nC_n)b^n Here (a=1 ; b=4x^4 , n= 4) :. 1^n=1 , x^0=1 We know nC_r= (n!)/(r!(n-r)!) :. 4C_0=1 , 4C_1=4 , 4C_2=6 ,4C_3=4,4C_4=1 :. (1+x)^3= 1 + 3x+3x^2+x^3 :. (1+4x^4)^4 = 1^4 + 4*1^3*4x^4+6*1^2*(4x^4)^2+4*1* (4x^4)^3 + (4x^4)^4 :. (1+4x^4)^4=1+16x^4+96x^8 +256x^12+256x^16 [Ans] Answer link Related questions What is Pascal's triangle? How do I find the nth row of Pascal's triangle? How does Pascal's triangle relate to binomial expansion? How do I find a coefficient using Pascal's triangle? How do I use Pascal's triangle to expand (2x + y)^4? How do I use Pascal's triangle to expand (3a + b)^4? How do I use Pascal's triangle to expand (x + 2)^5? How do I use Pascal's triangle to expand (x - 1)^5? How do I use Pascal's triangle to expand a binomial? How do I use Pascal's triangle to expand the binomial (a-b)^6? See all questions in Pascal's Triangle and Binomial Expansion Impact of this question 1643 views around the world You can reuse this answer Creative Commons License