How do you evaluate the limit #(2tan^2x)/x^2# as x approaches #0#? Calculus Limits Determining Limits Algebraically 1 Answer Andrea S. Dec 26, 2016 #lim_(x->0)2tan^2x/(x^2) = 2# Explanation: Considering that: #tanx=sinx/cosx# We have that: #2tan^2x/(x^2) = 2* (sinx/x)^2*1/(cos^2x)# So: #lim_(x->0)2tan^2x/(x^2) = lim_(x->0)[2* (sinx/x)^2*1/(cos^2x)] = 2*1^2*1/(1^2) =2# Answer link Related questions How do you find the limit #lim_(x->5)(x^2-6x+5)/(x^2-25)# ? How do you find the limit #lim_(x->3^+)|3-x|/(x^2-2x-3)# ? How do you find the limit #lim_(x->4)(x^3-64)/(x^2-8x+16)# ? How do you find the limit #lim_(x->2)(x^2+x-6)/(x-2)# ? How do you find the limit #lim_(x->-4)(x^2+5x+4)/(x^2+3x-4)# ? How do you find the limit #lim_(t->-3)(t^2-9)/(2t^2+7t+3)# ? How do you find the limit #lim_(h->0)((4+h)^2-16)/h# ? How do you find the limit #lim_(h->0)((2+h)^3-8)/h# ? How do you find the limit #lim_(x->9)(9-x)/(3-sqrt(x))# ? How do you find the limit #lim_(h->0)(sqrt(1+h)-1)/h# ? See all questions in Determining Limits Algebraically Impact of this question 13346 views around the world You can reuse this answer Creative Commons License