How do you evaluate the limit (1/(x+2)-1/2)/x as x approaches 0? Calculus Limits Determining Limits Algebraically 1 Answer Noah G Nov 10, 2016 The limit is -1/4. Explanation: =lim_(x->0) ((2 - (x + 2))/(2(x + 2)))/x =lim_(x->0) ((2 - x - 2)/(2(x+ 2)))/x =lim_(x->0) ((-x)/(2(x+ 2)))/x =lim_(x->0) (-x)/(2(x + 2)) xx 1/x =lim_(x->0) -1/(2(x + 2)) = -1/(2(0 + 2)) =-1/4 Hopefully this helps! Answer link Related questions How do you find the limit lim_(x->5)(x^2-6x+5)/(x^2-25) ? How do you find the limit lim_(x->3^+)|3-x|/(x^2-2x-3) ? How do you find the limit lim_(x->4)(x^3-64)/(x^2-8x+16) ? How do you find the limit lim_(x->2)(x^2+x-6)/(x-2) ? How do you find the limit lim_(x->-4)(x^2+5x+4)/(x^2+3x-4) ? How do you find the limit lim_(t->-3)(t^2-9)/(2t^2+7t+3) ? How do you find the limit lim_(h->0)((4+h)^2-16)/h ? How do you find the limit lim_(h->0)((2+h)^3-8)/h ? How do you find the limit lim_(x->9)(9-x)/(3-sqrt(x)) ? How do you find the limit lim_(h->0)(sqrt(1+h)-1)/h ? See all questions in Determining Limits Algebraically Impact of this question 12915 views around the world You can reuse this answer Creative Commons License