How do you evaluate log_4 (-1/64)log4(164)?

1 Answer
Aug 9, 2016

log_4(-1/64) = -3+i (pi pm 2kpi )/log_e 4log4(164)=3+iπ±2kπloge4

for k = 0,1,2,cdotsk=0,1,2,

Explanation:

Let us investigate the complex solutions. We know by the logarithm definition

4^z = -1/64 = -4^{-3}4z=164=43

Supposing now z = x + i yz=x+iy we have

4^x 4^{iy} = -4^{-3}4x4iy=43 so we have

4^x = 4^{-3}->x = -34x=43x=3 and
4^{iy} = -14iy=1

We know

4 = e^{log_e 4}4=eloge4 so

4^{iy} = e^{i y log_e 4} = cos(y log_e 4)+i sin(y log_e 4) = -14iy=eiyloge4=cos(yloge4)+isin(yloge4)=1. This condition is attained for

y log_e4 = pi pm 2kpiyloge4=π±2kπ with k= 0,1,2,3,4,cdotsk=0,1,2,3,4,

so

y = (pi pm 2kpi )/log_e 4y=π±2kπloge4

Finally

log_4(-1/64) = -3+i (pi pm 2kpi )/log_e 4log4(164)=3+iπ±2kπloge4