How do you evaluate #6^3#? Prealgebra Exponents, Radicals and Scientific Notation Exponents 1 Answer 256 Jan 22, 2017 #6^3=216# Explanation: #6^3=6(6^2)=6*6*6=36(6)=(30+6)(6)=180+36=ul(216)# Or #6^3=(2(3))^3=2^3(3^3)=4(2)(3(9))=(8(27))=(8(20+7))=(160+56)=ul(216)# Answer link Related questions How do you simplify #c^3v^9c^-1c^0#? How do you simplify #(- 1/5)^-2 + (-2)^-2#? How do you simplify #(4^6)^2 #? How do you simplify #3x^(2/3) y^(3/4) (2x^(5/3) y^(1/2))^3 #? How do you simplify #4^3ยท4^5#? How do you simplify #(5^-2)^-3#? How do you simplify and write #(-5.3)^0# with positive exponents? How do you factor #12j^2k - 36j^6k^6 + 12j^2#? How do you simplify the expression #2^5/(2^3 times 2^8)#? When can I add exponents? See all questions in Exponents Impact of this question 3296 views around the world You can reuse this answer Creative Commons License