How do you divide #(x^4 - 2x^3 - x + 2 )/( x^3 - 1)#? Precalculus Real Zeros of Polynomials Long Division of Polynomials 1 Answer Ratnaker Mehta Aug 28, 2016 #"The Quotient is" (x-2), "&, Remainder"=0#. Explanation: We see that the #"Nr."=x^4-2x^3-x+2# #=ul(x^4-x)-ul(2x^3+2)# #=x(x^3-1)-2(x^3-1)# #=(x^3-1)(x-2)# #"Therefore"=(x^4-2x^3-x+2)/(x^3-1)# #={cancel((x^3-1))(x-2)}/(cancel(x^3-1))# #=x-2#. Answer link Related questions What is long division of polynomials? How do I find a quotient using long division of polynomials? What are some examples of long division with polynomials? How do I divide polynomials by using long division? How do I use long division to simplify #(2x^3+4x^2-5)/(x+3)#? How do I use long division to simplify #(x^3-4x^2+2x+5)/(x-2)#? How do I use long division to simplify #(2x^3-4x+7x^2+7)/(x^2+2x-1)#? How do I use long division to simplify #(4x^3-2x^2-3)/(2x^2-1)#? How do I use long division to simplify #(3x^3+4x+11)/(x^2-3x+2)#? How do I use long division to simplify #(12x^3-11x^2+9x+18)/(4x+3)#? See all questions in Long Division of Polynomials Impact of this question 3339 views around the world You can reuse this answer Creative Commons License