How do you divide (x^3+7x^2-4x-1)/(3x-1) ?

1 Answer

y = 1/3 x^2 + 22/9 x - 14/27 -41/27 frac{1}{3x - 1}

Explanation:

Divide x^3 by 3x, the quotient is 1/3 x^2

y = 1/3 x^2 + frac{1/3 x^2 + 7x^2 - 4x - 1}{3x - 1}

y = 1/3 x^2 + frac{22/3 x^2 - 4x - 1}{3x - 1}

Divide 22/3 x^2 by 3x, the quotient is 22/9 x

y = 1/3 x^2 + 22/9 x + frac{22/9 x - 4x - 1}{3x - 1}

y = 1/3 x^2 + 22/9 x + frac{-14/9 x - 1}{3x - 1}

Divide 14/9 x by 3x, the quotient is -14/27

y = 1/3 x^2 + 22/9 x - 14/27 + frac{-14/27 - 1}{3x - 1}

Degree above < degree below.