How do you divide ( x^3+4x^2-7x-6 )/((x + 1)(x + 10) )x3+4x27x6(x+1)(x+10)?

1 Answer

(x-7)+(60x+64)/(x^2+11x+10)=(x-7)+(4(15x+16))/((x+1)(x+10))(x7)+60x+64x2+11x+10=(x7)+4(15x+16)(x+1)(x+10)

Explanation:

There are no factors of the numerator that can help us, and so we're left to do this via long division. Let's first expand the denominator:

(x+1)(x+10)=x^2+11x+10(x+1)(x+10)=x2+11x+10

And now for the long division:

color(white)((x^2+11x+10)/color(black)(x^2+11x+10")")(x^3+4x^2-7x-6)/color(black)bar(x^3+4x^2-7x-6))x2+11x+10x2+11x+10)x3+4x27x6¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯x3+4x27x6

x^2x2 goes into x^3x3 xx times:

color(white)((x^2+11x+10)/color(black)(x^2+11x+10")")(color(black)(x+)4x^2-7x-6)/color(black)bar(x^3+4x^2-7x-6))x2+11x+10x2+11x+10)x+4x27x6¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯x3+4x27x6
color(white)((x^2+11x+10)/(x^2+11x+10")")(color(black)(x^3+11x^2+10xcolor(white)(-6)))/color(black)bar(0x^3-7x^2-17x-6))x2+11x+10x2+11x+10)x3+11x2+10x6¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯0x37x217x6

x^2x2 goes into -7x^27x2 -77 times:

color(white)((x^2+11x+10)/color(black)(x^2+11x+10")")(color(black)(x-7)x^2-7x-6)/color(black)bar(x^3+4x^2-7x-6))x2+11x+10x2+11x+10)x7x27x6¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯x3+4x27x6
color(white)((x^2+11x+10)/(x^2+11x+10")")(color(black)(x^3+11x^2+10xcolor(white)(-6)))/color(black)bar(color(white)(0x^3)-7x^2-17x-6))x2+11x+10x2+11x+10)x3+11x2+10x6¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯0x37x217x6
color(white)((x^2+11x+10)/(x^2+11x+10")")(color(black)(color(white)(x^3)-7x^2-77x-70))/color(black)bar(color(white)(0x^3)+0x^2+60x+64))x2+11x+10x2+11x+10)x37x277x70¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯0x3+0x2+60x+64

This gives us:

(x^3+4x^2-7x-6)/(x^2+11x+10)=(x-7)+(60x+64)/(x^2+11x+10)=(x-7)+(4(15x+16))/((x+1)(x+10))x3+4x27x6x2+11x+10=(x7)+60x+64x2+11x+10=(x7)+4(15x+16)(x+1)(x+10)