How do you divide ( x^3+4x^2-17x-16 )/(x-4)x3+4x2−17x−16x−4?
1 Answer
Apr 20, 2018
Explanation:
"one way is to use the divisor as a factor in the numerator"one way is to use the divisor as a factor in the numerator
"consider the numerator"consider the numerator
color(red)(x^2)(x-4)color(magenta)(+4x^2)+4x^2-17x-16x2(x−4)+4x2+4x2−17x−16
=color(red)(x^2)(x-4)color(red)(+8x)(x-4)color(magenta)(+32x)-17x-16=x2(x−4)+8x(x−4)+32x−17x−16
=color(red)(x^2)(x-4)color(red)(+8x)(x-4)color(red)(+15)(x-4)color(magenta)(+60)-16=x2(x−4)+8x(x−4)+15(x−4)+60−16
=color(red)(x^2)(x-4)color(red)(+8x)(x-4)color(red)(+15)(x-4)+44=x2(x−4)+8x(x−4)+15(x−4)+44
"quotient "=color(red)(x^2+8x+15)," remainder "=44quotient =x2+8x+15, remainder =44
rArr(x^3+4x^2-17x-16)/(x-4)⇒x3+4x2−17x−16x−4
=x^2+8x+15+44/(x-4)=x2+8x+15+44x−4