How do you divide (x^3-13x-18) / (x-4) x3−13x−18x−4?
1 Answer
Aug 8, 2017
Explanation:
"one way is to use the divisor as a factor in the numerator"one way is to use the divisor as a factor in the numerator
"consider the numerator"consider the numerator
color(red)(x^2)(x-4)color(magenta)(+4x^2)-13x-18x2(x−4)+4x2−13x−18
=color(red)(x^2)(x-4)color(red)(+4x)(x-4)color(magenta)(+16x)-13x-18=x2(x−4)+4x(x−4)+16x−13x−18
=color(red)(x^2)(x-4)color(red)(+4x)(x-4)color(red)(+3)(x-4)color(magenta)(+12)-18=x2(x−4)+4x(x−4)+3(x−4)+12−18
=color(red)(x^2)(x-4)color(red)(+4x)(x-4)color(red)(+3)(x-4)-6=x2(x−4)+4x(x−4)+3(x−4)−6
"quotient "=color(red)(x^2+4x+3)," remainder "=-6quotient =x2+4x+3, remainder =−6
rArr(x^3-13x-18)/(x-4)=x^2+4x+3-6/(x-4)⇒x3−13x−18x−4=x2+4x+3−6x−4