How do you divide #(x^2+x-2)/(2x + 4)# using polynomial long division?

1 Answer
Apr 5, 2017

#(x-1)/2#

Explanation:

#" "x^2+x-2#
#color(magenta)(1/2x)(2x+4)->" "ul(x^2+2x) larr" subtract"#
#" "0 -x-2#
#color(magenta)(-1/2)(2x+4)->" "ul( -x-2) larr" subtract"#
#" "0+0 larr" remainder"#

As the remainder is zero the division is exact.

#(x^2+x-2)/(2x+4)=color(magenta)( x/2-1/2)->(x-1)/2#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(brown)("The above is actually the same process as the traditional method.")##color(brown)("The only difference is the format chosen.")#