Write the dividend with 0s for the missing terms:
color(white)( (2x+4)/color(black)(2x+4))color(white)((x^2+0x+0))/(")" color(white)(x)x^2+0x + 0)
Please observe that x^2/(2x) = 1/2x, therefore, we put 1/2x in the quotient:
color(white)( (2x+4)/color(black)(2x+4))(1/2xcolor(white)(0x+0))/(")" color(white)(x)x^2+0x + 0)
We multiply 1/2x(2x+4) = x^2+2x and then we subtract this underneath:
color(white)( (2x+4)/color(black)(2x+4))(1/2xcolor(white)(0x+0))/(")" color(white)(x)x^2+0x + 0)
color(white)(".............")ul(-x^2-2x)
color(white)(".....................")-2x
Please observe that (-2x)/(2x) = -1, therefore, we add -1 in the quotient:
color(white)( (2x+4)/color(black)(2x+4))(1/2x-1color(white)(+0))/(")" color(white)(x)x^2+0x + 0)
color(white)(".............")ul(-x^2-2x)
color(white)(".....................")-2x
We multiply -1(2x+4) = -2x-4 and then we subtract this underneath:
color(white)( (2x+4)/color(black)(2x+4))(1/2x-1color(white)(+0))/(")" color(white)(x)x^2+0x + 0)
color(white)(".............")ul(-x^2-2x)
color(white)(".....................")-2x+0
color(white)("........................")ul(2x+4)
color(white)("................................")4" " larr This is the remainder.
You can write the remainder as 4/(2x+4) or 2/(x+2)
The results of the division is:
x^2/(2x + 4)= 1/2x-1+2/(x+2