f(x)={8x^6-32x^5+4x^4}/{x+2}={4x^4(2x^2-8x+1)}/{x+2}f(x)=8x6−32x5+4x4x+2=4x4(2x2−8x+1)x+2
2x-122x−12
bar {2x^2-8x+1}|x+2¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯2x2−8x+1∣x+2
-−
2x^2+4x2x2+4x
==
0x^2-12x+10x2−12x+1
-−
0x^2-12x-240x2−12x−24
==
0x^2+0x-230x2+0x−23
=>⇒
f(x)=4x^4[(2x-12)-23/{x+2}]f(x)=4x4[(2x−12)−23x+2]