How do you divide (4x^4 -5x^2-2x+24)/((x + 4) )?
1 Answer
Oct 6, 2017
Explanation:
"one way is to use the divisor as a factor in the numerator"
"consider the numerator"
color(red)(4x^3)(x+4)color(magenta)(-16x^3)-5x^2-2x+24
=color(red)(4x^3)(x+4)color(red)(-16x^2)(x+4)color(magenta)(+64x^2)-5x^2-2x+24
=color(red)(4x^3)(x+4)color(red)(-16x^2)(x+4)color(red)(+59x)(x+4)color(magenta)(-236x)-2x+24
=color(red)(4x^3)(x+4)color(red)(-16x^2)(x+4)color(red)(+59x)(x+4)color(red)
color(white)(=)color(red)(-238)(x+4)color(magenta)(+952)+24
"quotient "=color(red)(4x^3-16x^2+59x-238)
"remainder "=976
rArr(4x^4-5x^2-2x+24)/(x+4)
=4x^3-16x^2+59x-238+976/(x+4)