How do you divide (3x^4-3x^3+x^2 + x – 15) /(x – 3)^2?

1 Answer
Jun 29, 2018

3x^2+15x+64 + (250x-591)/(x-3)^2

Explanation:

Given: (3x^4 - 3x^3 + x^2 + x - 15)/(x-3)^2

Using long division, the denominator becomes: x^2 - 6x + 9

x^2 - 6x + 9 | bar(3x^4 - 3x^3 + x^2 + x - 15)

We want to eliminate 3x^4. What times x^2 = 3x^4? " "3x^2

Multiply 3x^2 times each of the terms in the divisor and then subtract:

" "3x^2
x^2 - 6x + 9 | bar(3x^4 - 3x^3 + " "x^2 + x - 15)
" "ul(3x^4 - 18x^3 + 27x^2)
" "15x^3 - 26x^2

Bring down the next term from the dividend:

" "3x^2
x^2 - 6x + 9 | bar(3x^4 - 3x^3 + " "x^2 + x - 15)
" "ul(3x^4 - 18x^3 + 27x^2)
" "15x^3 - 26x^2 + x

We want to eliminate 15x^3. What times x^2 = 15x^3? " "15x

Multiply 15x times each of the terms in the divisor and then subtract and then bring down the next dividend term:

" "3x^2 + 15x
x^2 - 6x + 9 | bar(3x^4 - 3x^3 + " "x^2 + " "x - 15)
" "ul(3x^4 - 18x^3 + 27x^2)
" "15x^3 - 26x^2 + " "x
" "ul(15x^3 -90x^2 + 135x)
" "64x^2 - 134x - 15

We want to eliminate 64x^2. What times x^2 = 64x^2? " "64

Multiply 64 times each of the terms in the divisor and then subtract

" "3x^2 + 15x + 64
x^2 - 6x + 9 | bar(3x^4 - 3x^3 + " "x^2 + " "x - 15)
" "ul(3x^4 - 18x^3 + 27x^2)
" "15x^3 - 26x^2 + " "x
" "ul(15x^3 -90x^2 + 135x)
" "64x^2 - 134x - 15
" "ul(64x^2 - 384x + 576
" "250x - 591

(3x^4 - 3x^3 + x^2 + x - 15)/(x-3)^2 = 3x^2+15x+64 + (250x-591)/(x-3)^2