How do you divide (-3x^3 - x^2 + 3x -18)/(2x+2)?

1 Answer
Aug 2, 2018

-3x^3-x^2+3x-18=(2x+2)(-3/2x^2+x+1/2)-19

Explanation:

Let ,
F(x)=(-3x^3-x^2+3x-18)/(2x+2)=(-3x^3-x^2+3x-18)/(2(x+1))

**We try to obtain factor (x+1) from the numerator-where it is **

possible and left the free term , adjusting with (-18).
"Numerator"=-3x^3color(red)(-x^2)+color(blue)(3x)color(brown)(-18

=-3x^3color(red)(-3x^2+2x^2)color(blue)(+2x+x)+color(brown)(1-19
=-3x^2(x+1)+2x(x+1)+1(x+1)color(brown)(-19
=(x+1)[-3x^2+2x+1]color(brown)(-19

So,

F(x)=((x+1)[-3x^2+2x+1]color(brown)(-19))/(2(x+1)

:. F(x)=(cancel((x+1))[-3x^2+2x+1])/(2cancel((x+1)))-color(brown)(19)/(2(x+1))

:.F(x)=(-3x^2+2x+1)/2-19/(2(x+1))
Hence ,
"quotient polynomial : "q(x)=-3/2x^2+x+1/2

And remainder =-19

OR
-3x^3-x^2+3x-18=(2x+2)(-3/2x^2+x+1/2)-19