How do you divide #(6x^3-12x^2-5x+3) / (6x-9)# using long division?

1 Answer
Nov 20, 2016

#x^2-1/2x-19/12-45/(5(6x-9))#

Explanation:

Start point#" "->" "6x^3-12x^2-5x+3#
#color(red)(x^2)(6x-9) ->" "ul(6x^3-9x^2) larr" Subtract"#
#" "0-3x^2-5x+3#
#color(red)(-1/2x)(6x-9)->" " ul(-3x^2+9/2x) larr" Subtract"#
#" "0 -19/2x+3#
#color(red)(-19/12)(6x-9)->" "ul( -19/2x+57/4) larr" Subtract"#
#" "color(red)(0 -45/5 larr" Remainder")#

,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#color(blue)((6x^3-12x^2-5x+3)/(6x-9)" "=" ")color(red)(x^2-1/2x-19/12-45/(5(6x-9))#