How do you divide ( -3x^3+12x^2-7x-6 )/((x + 1)(4x+12) )3x3+12x27x6(x+1)(4x+12)?

1 Answer
Dec 28, 2017

-3x/4+6-(47x+39)/(2(x^2+4x+3))3x4+647x+392(x2+4x+3)

Explanation:

Expand (x+1)(4x+12)(x+1)(4x+12) into 4x^2+16x+124x2+16x+12

Now you can long divide (-3x^3+12x^2-7x-6)/(4x^2+16x+12)3x3+12x27x64x2+16x+12.

First, divide the leading coefficients, that is -3x^33x3 and 4x^24x2 into -3x/43x4. Now multiply (4x^2+16x+12)(4x2+16x+12) by -3x/43x4 to get -3x^3-12x^2-9x3x312x29x. Subtract -3x^3-12x^2-9x3x312x29x from -3x^3+12x^2-7x-63x3+12x27x6 to get the remainder, that is 24x^2+2x-624x2+2x6.

Therefore,
(-3x^3+12x^2-7x-6)/(4x^2+16x+12)=-3x/4+(24x^2+2x-6)/(4x^2+16x+12)3x3+12x27x64x2+16x+12=3x4+24x2+2x64x2+16x+12.

Now, divide (24x^2+2x-6)/(4x^2+16x+12)24x2+2x64x2+16x+12 with the same steps above. First, divide the leading coefficients to get 66. Multiply 4x^2+16x+124x2+16x+12 by 66 to get 24x^2+96x+7224x2+96x+72. Subtract 24x^2+96x+7224x2+96x+72 from 24x^2+2x-624x2+2x6 to get the second remainder, -94x-7894x78.

Therefore,

(24x^2+2x-6)/(4x^2+16x+12)=6+(-94x-78)/(4x^2+16x+12)24x2+2x64x2+16x+12=6+94x784x2+16x+12.

Adding together gives us

-3x/4+6+(-94x-78)/(4x^2+16x+12)3x4+6+94x784x2+16x+12

which simplifies into

-3x/4+6-(47x+39)/(2(x^2+4x+3))3x4+647x+392(x2+4x+3)