How do you divide (2x^4+4x+1)/(2x+3)2x4+4x+12x+3?

1 Answer
Dec 15, 2015

x^3 - 3/2 x^2 + 9/4 x - 11/8x332x2+94x118 with remainder 41/8418

Explanation:

I know that there are in some countries, a different notation of long polynomial division is being used. Let me use the notation that I'm most familiar with, I hope that it will be no problem for you to convert it into your prefered notation.

color(white)(xii)(2x^4 color(white)(xxxxxxxxxxx)+ 4x + 1) -: (2x + 3) = x^3 - 3/2 x^2 + 9/4 x - 11/8ξi(2x4×××××x+4x+1)÷(2x+3)=x332x2+94x118
- (2x^4+ 3x^3)(2x4+3x3)
color(white)(xx)(color(white)(xxxxxxx))/()××××x
color(white)(xxxxx)- 3x^3 ××x3x3
color(white)(xx) - (-3x^3 - 9/2 x^2) ×(3x392x2)
color(white)(xxxx)(color(white)(xxxxxxxxxxx))/()×××××××x
color(white)(xxxxxxxxxxxx)9/2 x^2 + 4x××××××92x2+4x
color(white)(xxxxxxxxx)-(9/2 x^2 + 27/4 x)××××x(92x2+274x)
color(white)(xxxxxxxxxxx)(color(white)(xxxxxxxxxx))/()×××××x×××××
color(white)(xxxxxxxxxxxxxxx) -11/4 x + color(white)(i) 1×××××××x114x+i1
color(white)(xxxxxxxxxxxx) -(-11/4 x -33/8)××××××(114x338)
color(white)(xxxxxxxxxxxxxx)(color(white)(xxxxxxxxxxx))/()××××××××××××x
color(white)(xxxxxxxxxxxxxxxxxxxxxxx)41/8×××××××××××x418

Thus, your quotient is

x^3 - 3/2 x^2 + 9/4 x - 11/8x332x2+94x118

and your remainder is 41/8418.

In total,

(x^4 + 4x + 1)/(2x + 3) = x^3 - 3/2 x^2 + 9/4 x - 11/8 + 41/(8(2x+3))x4+4x+12x+3=x332x2+94x118+418(2x+3)