How do you divide #(2x^3+x+3 )/(x+1)#? Precalculus Real Zeros of Polynomials Long Division of Polynomials 1 Answer Narad T. Jan 23, 2017 The answer is #=2x^2-2x+3# Explanation: You can do a long division #color(white)(aaaa)##2x^3##color(white)(aaaaaaa)##x+3##color(white)(aaaaa)##|##x+1# #color(white)(aaaa)##2x^3+2x^2##color(white)(aaaa)####color(white)(aaaaaaaa)##|##2x^2-2x+3# #color(white)(aaaaa)##0-2x^2+x# #color(white)(aaaaaaa)##-2x^2-2x# #color(white)(aaaaaaaa)##-0+3x+3# #color(white)(aaaaaaaaaaaa)##+3x+3# #color(white)(aaaaaaaaaaaaa)##+0+0# Therefore, #(2x^3+2x^2)/(x+1)=2x^2-2x+3# Answer link Related questions What is long division of polynomials? How do I find a quotient using long division of polynomials? What are some examples of long division with polynomials? How do I divide polynomials by using long division? How do I use long division to simplify #(2x^3+4x^2-5)/(x+3)#? How do I use long division to simplify #(x^3-4x^2+2x+5)/(x-2)#? How do I use long division to simplify #(2x^3-4x+7x^2+7)/(x^2+2x-1)#? How do I use long division to simplify #(4x^3-2x^2-3)/(2x^2-1)#? How do I use long division to simplify #(3x^3+4x+11)/(x^2-3x+2)#? How do I use long division to simplify #(12x^3-11x^2+9x+18)/(4x+3)#? See all questions in Long Division of Polynomials Impact of this question 1220 views around the world You can reuse this answer Creative Commons License