How do you divide (-2x^3+7x^2+9x+15)/(3x-1) ?

1 Answer
Jun 24, 2016

=>-2/3x^2+19/2x+100/27+505/(81x-27)

Explanation:

" "color(white)(..)-2x^3+7x^2+9x+15
" "color(magenta)(-2/3x^2)(3x-1) ->color(white)(.)ul( -2x^3+2/3x^2)" "larr" Subtract"
" "color(white)(.)0+19/3x^2+9x+15
" "color(magenta)(+19/9x)(3x-1)-> " "color(white)(.)ul(+19/3x^2-19/9x)larr" Subtract"
" "color(white)(..)0+100/9x+15
" "color(magenta)(+100/27)(3x-1)->" " ul(+100/9x-100/27)"Subt."
" remainder "rarr 0 color(white)(....) color(magenta)(+505/27)

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(-2x^3+7x^2+9x+15)/(3x-1) = color(magenta)(-2/3x^2+19/9x+100/27+[505/27-:(3x-1)]

=>-2/3x^2+19/2x+100/27+505/(81x-27)