How do you divide (2x^3+7x^2-5x-4) / (2x+1)? Algebra Rational Equations and Functions Division of Polynomials 1 Answer P dilip_k Feb 28, 2016 (2x^3+7x^2-5x-4)/(2x+1) =(x^2(2x+1)-x^2+7x^2-5x-4)/(2x+1) =(x^2(2x+1)+6x^2-5x-4)/(2x+1) =(x^2(2x+1)+3x(2x+1)-3x-5x-4)/(2x+1) =(x^2(2x+1)+3x(2x+1)-8x-4)/(2x+1) =(x^2(2x+1)+3x(2x+1)-4(2x+1))/(2x+1) =x^2+3x-4 Answer link Related questions What is an example of long division of polynomials? How do you do long division of polynomials with remainders? How do you divide 9x^2-16 by 3x+4? How do you divide \frac{x^2+2x-5}{x}? How do you divide \frac{x^2+3x+6}{x+1}? How do you divide \frac{x^4-2x}{8x+24}? How do you divide: (4x^2-10x-24) divide by (2x+3)? How do you divide: 5a^2+6a-9 into 25a^4? How do you simplify (3m^22 + 27 mn - 12)/(3m)? How do you simplify (25-a^2) / (a^2 +a -30)? See all questions in Division of Polynomials Impact of this question 2247 views around the world You can reuse this answer Creative Commons License