How do you divide (2x^3-5x^2+4x+12)/(x-7) 2x3−5x2+4x+12x−7?
2 Answers
Explanation:
"one way is to use the divisor as a factor in the numerator"one way is to use the divisor as a factor in the numerator
"consider the numerator"consider the numerator
color(red)(2x^2)(x-7)color(magenta)(+14x^2)-5x^2+4x+122x2(x−7)+14x2−5x2+4x+12
=color(red)(2x^2)(x-7)color(red)(+9x)(x-7)color(magenta)(+63x)+4x+12=2x2(x−7)+9x(x−7)+63x+4x+12
=color(red)(2x^2)(x-7)color(red)(+9x)(x-7)color(red)(+67)(x-7)color(magenta)(+469)+12=2x2(x−7)+9x(x−7)+67(x−7)+469+12
=color(red)(2x^2)(x-7)color(red)(+9x)(x-7)color(red)(+67)(x-7)+481=2x2(x−7)+9x(x−7)+67(x−7)+481
"quotient "=color(red)(2x^2+9x+67)", remainder "=481quotient =2x2+9x+67, remainder =481
rArr(2x^3-5x^2+4x+12)/(x-7)⇒2x3−5x2+4x+12x−7
=2x^2+9x+67+481/(x-7)=2x2+9x+67+481x−7
Explanation: