How do you divide ( 2x^3-5x^2+22x)/(2x +3)2x3−5x2+22x2x+3?
1 Answer
Mar 29, 2018
Explanation:
"one way is to use the divisor as a factor in the numerator"one way is to use the divisor as a factor in the numerator
"consider the numerator"consider the numerator
color(red)(x^2)(2x+3)color(magenta)(-3x^2)-5x^2+22xx2(2x+3)−3x2−5x2+22x
=color(red)(x^2)(2x+3)color(red)(-4x)(2x+3)color(magenta)(+12x)+22x=x2(2x+3)−4x(2x+3)+12x+22x
=color(red)(x^2)(2x+3)color(red)(-4x)(2x+3)color(red)(+17)(2x+3)color(magenta)(-51)=x2(2x+3)−4x(2x+3)+17(2x+3)−51
"quotient "=color(red)(x^2-4x+17)," remainder "=-51quotient =x2−4x+17, remainder =−51
rArr(2x^3-5x^2+22x)/(2x+3)⇒2x3−5x2+22x2x+3
=x^2-4x+17-51/(2x+3)=x2−4x+17−512x+3