How do you divide #(-2x^3-16x^2+13x-40)/(x-3) #?

1 Answer
Mar 15, 2017

#-2x^2-22x-53-199/(x-3)#

Explanation:

#" "-2x^3-16x^2+13x-40#
#color(red)(-2x^2)(x-3)->" "ul(-2x^3+6x^2) larr" subtract"#
#" "0-22x^2+13x-40#
#color(red)(-22x)(x-3)->" "ul(-22x^2+66x) larr" subtract"#
#" "0-53x-40#
#color(red)(-53)(x-3)-> " "ul(-53x+159) larr" subtract"#
#" "0color(red)(-199 larr" remainder")#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#color(red)(-2x^2-22x-53-199/(x-3))#