How do you divide (12x^3-16x^2-27x+36)/ (3x-4)12x3−16x2−27x+363x−4?
1 Answer
Nov 21, 2015
There are several ways to find:
(12x^3-16x^2-27x+36)/(3x-4) = 4x^2-912x3−16x2−27x+363x−4=4x2−9
Explanation:
We can factor by grouping:
12x^3-16x^2-27x+3612x3−16x2−27x+36
=(12x^3-16x^2)-(27x-36)=(12x3−16x2)−(27x−36)
=4x^2(3x-4)-9(3x-4)=4x2(3x−4)−9(3x−4)
=(4x^2-9)(3x-4)=(4x2−9)(3x−4)
So:
(12x^3-16x^2-27x+36)/(3x-4) = 4x^2-912x3−16x2−27x+363x−4=4x2−9
Alternatively, we can divide
to find:
(12x^3-16x^2-27x+36)/(3x-4) = 4x^2-912x3−16x2−27x+363x−4=4x2−9
with no remainder.