How do you differentiate #(x-4)/(x^2+2)#?
2 Answers
Dec 21, 2017
Explanation:
Apply the quotient rule which states:
Let
Thus,
Now plugging into the formula:
Simplify:
Dec 21, 2017
Explanation:
#"differentiate using the "color(blue)"quotient rule"#
#"given "y=(g(x))/(h(x))" then"#
#dy/dx=(h(x)g'(x)-g(x)h'(x))/(h(x))^2larrcolor(blue)"quotient rule"#
#g(x)=x-4rArrg'(x)=1#
#h(x)=x^2+2rArrh'(x)=2x#
#rArrd/dx((x-4)/(x^2+2))#
#=(x^2+2-2x(x-4))/(x^2+2)^2#
#=(8x-x^2+2)/(x^2+2)^2#