How do you convert #xy=x-2-3y^2 # into a polar equation?

1 Answer
May 24, 2017

#r^2sintheta(costheta+3sintheta)-rcostheta+2=0#

Explanation:

The relation between polar coordinates #(r,theta)# and Cartesian coordinates #(x,y)# is given by

#x=rcostheta#, #y=rsintheta# and #x^2+y^2=r^2#

Hence we can write #xy=x-2-3y^2# in polar form as

#rcosthetaxxrsintheta=rcostheta-2-3r^2sin^2theta#

or #r^2sinthetacostheta=rcostheta-2-3r^2sin^2theta#

or #r^2(sinthetacostheta+3sin^2theta)-rcostheta+2=0#

or #r^2sintheta(costheta+3sintheta)-rcostheta+2=0#