How do you convert r= -8(cos(x)+(sin(x)) r=8(cos(x)+(sin(x)) into cartesian form?

1 Answer
Mar 23, 2016

(x+4)^2+(y+4)^2=32(x+4)2+(y+4)2=32

Explanation:

r=-8(cos x+sinx)r=8(cosx+sinx)

r^2=-8r(cosx+sinx)r2=8r(cosx+sinx)-> multiply both sides by r

r^2=-8rcosx-8rsinxr2=8rcosx8rsinx->distribute

x^2+y^2=-8x-8yx2+y2=8x8y->use formula x=rcos theta, y=rsin thetax=rcosθ,y=rsinθ

x^2+8x+y^2+8y=0x2+8x+y2+8y=0

(x^2+8x+16)+(y^2+8y+16)=16+16(x2+8x+16)+(y2+8y+16)=16+16-> complete the square

(x+4)^2+(y+4)^2=32(x+4)2+(y+4)2=32