How do you convert #r=4sin theta# into cartesian form?

1 Answer
Feb 4, 2017

#x^2+y^2-y=0#

Explanation:

for polar to and from Cartesian the equations are

#r^2=x^2+y^2#

#x=rcostheta#

#y=rsintheta#
#:.r=4sintheta " multiply through by "r#

#r^2=rsintheta#

substituting back using the above conversions

#x^2+y^2=4y#

#x^2+y^2-4y=0#

graph{x^2+y^2=4y [-10, 10, -5, 5]} this is a circle centre #(0,2) # radius #=2#